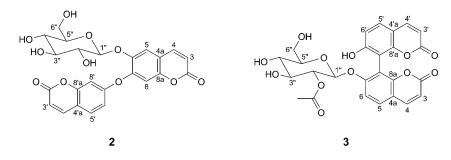

Three New Dicoumarins from Daphne feddei

by Shuang Liang^a), Yun-Heng Shen^b), Jun-Mian Tian^b), Zhi-Jun Wu^b), Hui-Zi Jin^a), Wei-Dong Zhang^{*a})^b), and Shi-Kai Yan^{*a})

^a) School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P. R. China (phone: +86-21-25070386; fax: +86-21-25070386; e-mail: wdzhangy@hotmail.com) (phone: +86-21-34205989; fax: +86-21-34205989; e-mail: shkyan@126.com)
^b) Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China

A novel dicoumarinolignoid, feddeiticin (1), the first example with a dicoumarinolignoid skeleton, along with the two new dicoumarin glucosides 2 and 3, were isolated from the stem barks of *Daphne feddei*. The structures were elucidated on the basis of spectral analyses.


Introduction. – Daphne feddei LÉVL. is a common evergreen shrub cultivated in Yunnan, Sichuan, and Guizhou provinces in China. Its stem barks are used as a folk medicine for the treatment of injuries from falls and bruises [1]. In a previous chemical investigation of *D. feddei*, the occurrence of four diterpenes had been reported [2]. In the course of our studies on the constituents of thymelaeaceous plants [3-5], we investigated this plant and isolated a novel dicoumarinolignoid, feddeiticin¹) (1), the first example with a dicoumarinolignoid skeleton, along with the two new dicoumarin glucosides 2 and 3 (coumarin = 2*H*-1-benzopyran-2-one). Herein, we report the isolation and structural elucidation of the three new compounds.

Results and Discussion. – Feddeiticin (1) was obtained as a white powder (MeOH). The molecular formula $C_{29}H_{20}O_{12}$ was established by HR-ESI-MS (m/z 583.0848 ([M + Na]⁺)). The assignments of the ¹H- and ¹³C-NMR data (*Table 1*) were made by comparison with the data of daphneticin (=(2R,3R)-2,3-dihydro-3-(4-hydroxy-3,5-

1) Arbitrary atom numbering; for systematic names, see Exper. Part.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

dimethylphenyl)-2-(hydroxymethyl)-9*H*-pyrano[2,3-*f*]-1,4-benzodioxin-9-one) [6] and confirmed by COSY, HMQC, HMBC (*Fig.*), and NOESY experiments. To the best of our knowledge, $\mathbf{1}$ is the first example with a dicoumarinolignoid skeleton isolated from a natural source.

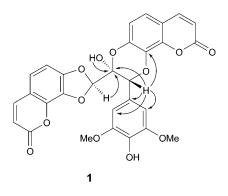


Figure. Selected HMBC of compound 1

The ¹³C-NMR and DEPT spectrum of 1 revealed 29 resonances, including those of two Me and twelve CH groups, and of fifteen quaternary C-atoms. In the ¹H-NMR spectrum, two pairs of d with an AB coupling pattern (δ (H) 6.30 (J=9.6 Hz, H-C(3)) and 7.80 (J=9.6 Hz, H-C(4)); δ (H) 7.34 (J= 9.6 Hz, H-C(5)) and 7.14 (J=9.6 Hz, H-C(6)), along with another two pairs of d with an AB coupling pattern H-atom resonance (δ (H) 6.31 (J = 9.6 Hz, H – C(3'')) and 7.94 (J = 9.6 Hz, H – C(4'')); δ (H) 7.27 (J = 9.6 Hz, H - C(5''')) and 7.00 (J = 9.6 Hz, H - C(6'''))), indicated the existence of two 7,8-dioxygenated coumarin groups [6]. In the ¹H-NMR spectrum, a s at δ (H) 6.94 (H–C(2") and H–C(6")) integrating for two aromatic H-atoms, together with the presence of two identical MeO groups at $\delta(H)$ 3.76 (s, 6 H), indicated a typical 4-hydroxy-3,5-dimethoxy-substituted benzene ring. This was confirmed by the nearly identical NMR spectra in the corresponding region of daphneticin, isolated form Daphne tangutica [6]. A three-C-atom sequence, $CH(O)-C(OH)-CH(O)_2$ (C(1'), C(2'), and C(3')), was deduced from the presence of a s at $\delta(H)$ 5.34 (H–C(1')), a d at $\delta(H)$ 8.82 (J=7.2 Hz, OH–C(2')), and a d at $\delta(H)$ 4.81 (J = 7.2 Hz, H - C(3')), as well as from the corresponding C-atom resonances at $\delta(\text{C})$ 76.3 (C(1')), 93.0 (C(2')), and 90.9 (C(3')). The HMBCs $\delta(C)$ 93.0 $(C(2'))/\delta(H)$ 5.34 (H-C(1')) and 4.81 (H-C(3')) (Fig.) further confirmed this three-C-atom sequence. The HMBC $\delta(H)$ 5.34 (s, H–C(1'))/ $\delta(C)$ 106.3 (C(2'') and C(6")) suggested that the three-C-atom sequence was attached to the 4-hydroxy-3,5-dimethoxyphenyl group. The fact that $\delta(H)$ 8.82 (d, J=7.2 Hz, OH-C(2')) had a correlation with $\delta(C)$ 93.0 (C(2')) suggested that the OH group was attached to C(2'). On the basis of the above data, the other 7,8-

	1 ¹)			1 ¹)	
	$\delta(C)$	$\delta(H)$		$\delta(C)$	$\delta(H)$
C(2)	159.4		H-C(6")	106.3	6.94 (s)
H-C(3)	113.4	6.30 (d, J = 9.6)	C(2''')	159.3	
H-C(4)	144.5	7.80 (d, J = 9.6)	H-C(3''')	113.4	6.31 (d, J = 9.6)
C(4a)	113.9		H-C(4''')	144.4	7.94 (d, J = 9.6)
H-C(5)	121.5	7.34 (d, J = 9.6)	C(4‴a)	114.0	
H-C(6)	113.6	7.14 (d, J = 9.6)	C(5")	147.6	
C(7)	145.9		H-C(5''')	121.6	7.27 (d, J = 9.6)
C(8)	127.7		H-C(6''')	113.6	7.00 (d, J = 9.6)
C(8a)	143.2		C(7''')	144.2	
H-C(1')	76.3	5.34(s)	C(8''')	127.1	
C(2')	93.0		C(8'''a)	143.0	
H-C(3')	90.9	4.81 (d, J = 7.2)	MeO-C(3'')	55.9	3.76(s)
C(1'')	122.0		MeO-C(5'')	55.9	3.76(s)
H - C(2'')	106.3	6.94(s)	OH-C(2')		8.82 (d, J = 7.2)
C(3'')	147.6		OH-C(4''')		8.65 (s)
C(4")	136.6				. /

Table 1. ¹³C- and ¹H-NMR Data ((D₆)DMSO) of Compound 1¹). δ in ppm, J in Hz.

dioxygenated coumarin group was located at C(3') through a 1,3-dioxolane ring. The ¹H,¹H-COSY and HMBC data (*Fig.*) confirmed the above deductions. This type of skeleton of **1** is similar to that of daphneticin and isodaphneticin [7]. Therefore, two structures, **1** and **1a**, are possible for feddeiticin. The final evidence in favor of **1** was the presence of the HMBC δ (H) 5.34 (*s*, H–C(1'))/ δ (C) 127.7 (C(8)), and the absence of a HMBC δ (H) 5.34 (H–C(1'))/ δ (C) 145.9 (C(7)). The relative configurations of H–C(1'), OH–C(2'), and H–C(3') in **1** were determined to be β , α , and α , respectively, based on the NOE OH–C(2')/H–C(3') and the absence of the NOEs H–C(1')/OH–C(2') and H–C(1')/H–C(3'). Furthermore, compound **1** was optically inactive and showed no ellipticity in the CD spectrum, which suggested that it occurs as a racemate.

Compound **2** was obtained as a white, optically active powder (MeOH). The molecular formula $C_{24}H_{20}O_{11}$ was established by HR-ESI-MS (m/z 507.0902 ([M + Na]⁺)). The structure of **2** was established by comparing the NMR data (*Table 2*) with those of 6-hydroxy-7-[(2-oxo-2*H*-1-benzopyran-7-yl)oxy]-2*H*-1-benzopyran-2-one [8], and confirmed by COSY, HMQC, HMBC, and NOESY experiments.

The ¹³C-NMR and DEPT spectra of **2** revealed 24 resonances, including those of one CH₂ and 13 CH groups, and of nine quaternary C-atoms. In the ¹H-NMR spectrum, two *d* with an *AB* coupling pattern (δ (H) 6.37 (J=9.6 Hz, H-C(3)) and 7.94 (J=9.6 Hz, H-C(4))), along with two *s* (δ (H) 7.56 (H-C(5)) and 7.32 (H-C(8))), indicated the existence of a 6,7-dioxygenated coumarin moiety. Another pair of *d* with an *AB* coupling pattern (δ (H) 6.32 (J=9.6 Hz, H-C(3')) and 7.99 (J=9.6 Hz, H-C(4'))), along with an *AB* coupling pattern (δ (H) 7.65 (d, J=9.6 Hz, H-C(5')), 6.94 (dd, J=1.8, 9.6 Hz, H-C(6')), and 6.86 (d, J=1.8 Hz, H-C(8'))), suggested the presence of a monosubstituted coumarin moiety. The latter was assigned to be 7-oxygenated based on the NOE correlation H-C(4')/H-C(5'). The ¹³C-NMR spectrum suggested that **2** contained a glucose unit (δ (C) 100.3, 77.3, 76.7, 73.1, 69.7, and 60.8). The anomeric H-C(1'') of the glucose moiety was determined to be β -oriented on the basis of the coupling constant for H-C(1'') (δ (H) 5.07 (d, J=8.4 Hz)). The HMBC H-C(1'')/C(6) (δ (C) 152.1) suggested that the sugar moiety was attached at C(6). The NMR spectra of **2** were very similar to those of 6-hydroxy-7-[(2-oxo-2*H*-1-benzopyran-7-yl)oxy]-2*H*-1-benzopyran-2-one [8], except for the additional

	2		3		
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	
C(2)	160.3		160.1		
H-C(3)	113.7	6.37 (d, J = 9.6)	113.2	6.32 (d, J = 8.4)	
H-C(4)	143.9	7.94 (d, J = 9.6)	144.6	8.08 (d, J = 8.4)	
C(4a)	113.4		113.7		
H-C(5)	121.0	7.56(s)	129.2	7.78 (d, J = 8.4)	
C(6) or $H-C(6)$	152.1		111.7	7.29 (d, J = 8.4)	
C(7)	152.3		157.9		
H-C(8) or $C(8)$	104.7	7.32(s)	109.5		
C(8a)	140.1		152.4		
C(2')	160.4		160.5		
H-C(3')	113.7	6.32 (d, J = 9.6)	111.0	6.18 (d, J = 8.4)	
H-C(4')	144.3	7.99(d, J = 9.6)	145.1	8.00 (d, J = 8.4)	
C(4'a)	114.2		111.3		
H-C(5')	130.0	7.65 (d, J = 9.6)	129.3	7.60 (d, J = 8.4)	
H-C(6')	114.2	6.94 (d, J = 9.6)	112.8	6.94 (d, J = 8.4)	
C(7′)	160.8		158.9		
H - C(8') or $C(8')$	104.1	6.86 (d, J = 2.4)	106.0		
C(8'a)	155.0		153.2		
H - C(1'')	100.3	5.07 (d, J = 8.4)	98.2	5.13 (d, J = 7.8)	
H - C(2'')	73.1	3.03 - 3.07 (m)	72.5	4.47 (dd, J = 9.6, 7.8)	
H - C(3'')	77.3	3.39 - 3.43 (m)	73.8	3.40 - 3.43 (m)	
H-C(4'')	69.7	3.03 - 3.07 (m)	69.7	3.15 - 3.19(m)	
H - C(5'')	76.7	3.23 - 3.26 (m)	77.4	3.47 - 3.52 (m)	
CH ₂ (6")	60.8	3.64-3.67, 3.39-3.43 (2m)	60.4	3.72-3.76, 3.47-3.52 (2m)	
MeCO			168.3		
MeCO			20.5	1.82(s)	

Table 2. ¹³C- and ¹H-NMR Data ((D_6)DMSO) of Compounds 2 and 3. δ in ppm, J in Hz.

signals due to a β -glucosyl group. Thus, compound **2** was deduced as 6-(β -glucopyranosyloxy)-7-[(2-oxo-2*H*-1-benzopyran-7-yl)oxy]-2*H*-1-benzopyran-2-one.

Compound **3** was obtained as a white, optically active powder (MeOH). The molecular formula $C_{26}H_{22}O_{12}$ was established by HR-ESI-MS (m/z 549.1006 ([M + Na]⁺)). The structure of **3** was identified by comparing the NMR data with those of giraldoid A (=7-(β -D-glucopyranosyloxy)-7'-hydroxy-[8,8'-bi-2H-1-benzopyran]-2,2'-dione) [9] and confirmed by COSY, HMQC, HMBC, and NOESY experiments.

The ¹³C-NMR and DEPT spectra of **3** revealed 26 resonances, including those of one Me, one CH₂, and 13 CH groups, and of eleven quaternary C-atoms. In the ¹H-NMR spectrum, two pairs of *d* with *AB* coupling patterns (δ (H) 6.32 (J=8.4 Hz, H–C(3)) and 8.08 (J=8.4 Hz, H–C(4)); δ (H) 7.78 (J= 8.4 Hz, H–C(5)) and 7.29 (J=8.4 Hz, H–C(6))) indicated the existence of a 7,8-dioxygenated coumarin moiety. Another two pairs of *d* with *AB* coupling patterns (δ (H) 6.18 (J=8.4 Hz, H–C(3')) and 8.00 (J=8.4 Hz, H–C(4')); δ (H) 7.60 (J=8.4 Hz, H–C(5')) and 6.94 (J=8.4 Hz, H–C(6'))) revealed another 7,8-dioxygenated coumarin moiety. The observation of six resonances at δ (C) 98.2, 77.4, 73.8, 72.5, 69.7, and 60.4 in the ¹³C-NMR spectrum of **3** disclosed the presence of a glucose moiety. Its anomeric configuration was determined to be β on the basis of the coupling constant for H–C(1'') (δ (H) 5.13 (d, J=7.8 Hz)). The HMBC H–C(1'')/C(7) (δ (C) 157.9) suggested that the sugar moiety was attached at C(7). The ¹H- and ¹³C-NMR (DEPT) spectra also showed signals of an Ac group (δ (H) 1.82 (s), 3 H); δ (C) 168.3 (MeCO) and 20.5 (*Me*CO). The HMBC δ (H) 4.47 (*dd*, J = 7.8, 9.6 Hz, H–C(2''))/ δ (C) 168.3 (MeCO) suggested that the Ac group was attached to C(2''). The NMR data were very similar to those of giraldoid A, except for this additional Ac group. Thus, compound **3** was deduced to be 2''-O-acetylgiraldoid A.

This work was supported by the *Program for Changjiang Scholars and Innovative Research Team in University* (PCSIRT), the *NCET Foundation*, the *NSFC* (30725045), the *National 863 Program* (2006AA02Z338), the *China Postdoctoral Science Foundation* (20070410711), the '973' *Program of China* (2007CB507400), and the *Shanghai Leading Academic Discipline Project* (B906), and in part by the *Scientific Foundation of Shanghai China* (07DZ19728, 06DZ19717, 06DZ19005).

Experimental Part

General. Column chromatography (CC): silica gel H (SiO₂, 10–40 µm) from Zhifu Huangwu Silica Gel D & R Plant, Yantai, China; Sephadex LH-20 and ODS from Pharmacia and Merck, resp. TLC: plates precoated with SiO₂ $H F_{254}$ (5–7 µm) from Zhifu Huangwu Silica Gel D & R Plant, Yantai, China. Optical rotations: Perkin-Elmer-343 polarimeter. CD Spectra: Jasco-J810 spectrometer. UV Spectra: Shimadzu-UV-2550 UV/VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Bruker-Vector-22 spectrometer; KBr pellets; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker-DRX-600 spectrometer; at 600 (¹H) and 150 MHz (¹³C, DEPT); (D₆)DMSO solns. with Me₄Si as internal standard; δ in ppm, J in Hz. HR-TOF-MS: ESI mode; Q-Tof-Micro-Mass spectrometer; in m/z.

Plant Material. The plant material was collected in July 2006 in Kunming City, Yunnan Province, China, and identified as *Daphne feddei* LÉVL. by Prof. *Li-Shan Xie* of the Kunming Institute of Botany. A voucher specimen was deposited with the Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai (No. 200607-12).

Extraction and Isolation. The air-dried and powdered stem barks of *D. feddei* (6.5 kg) were percolated with MeOH (25 l) at r.t. for 3×4 h. The solvent was evaporated. Then, the extract was suspended in H₂O and partitioned with petroleum ether, AcOEt, and BuOH, successively. The AcOEt extract (400 g) was subjected to CC (SiO₂ (1 kg), 9×100 cm column, CHCl₃/MeOH 100:1, 50:1, 25:1, 10:1, 8:1, and 5:1): *Frs.* 1-18. *Fr.* 13 (6.5 g) was subjected to CC (SiO₂ (150 g), 6×80 cm, CHCl₃/MeOH 20:1 and 15:1) to give impure **1**, which was further purified by CC (*Sephadex LH-20* (200 ml), MeOH): **1** (20 mg). *Fr.* 15 (2.5 g) was subjected to CC (SiO₂ (75 g), 6×80 cm, CHCl₃/MeOH 10:1) to give impure **2** and **3**, which were further purified by CC (*ODS* (100 g), MeOH/H₂O 35:65): **2** (10 mg) and **3** (70 mg).

(2RS,3SR)-2,3-Dihydro-3-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-[(2RS)-8-oxo-8H-1,3-dioxolo[4,5-h][1]benzopyran-2-yl]-9H-pyrano[2,3-f]1,4-benzodioxin-9-one (1): White powder (MeOH). M.p. 188–189°. UV (MeOH): 248 (4.11), 312 (4.21). [a]_B¹ = 0 (c = 0.09, MeOH). CD (c = 0.24, MeOH): $\Delta \varepsilon_{400-190} = 0$. IR: 3431, 3396, 3086, 2938, 2839, 1744, 1704, 1457, 1263, 1118, 1036, 836. ¹H- and ¹³C-NMR: *Table 1.* HR-TOF-MS: 583.0848 ([M + Na]⁺, C₂₉H₂₀NaO⁺₁₂; calc. 583.0852).

6-(β-Glucopyranosyloxy)-7-[(2-oxo-2H-1-benzopyran-7-yl)oxy]-2H-1-benzopyran-2-one (**2**): White powder (MeOH). M.p. 147–148°. UV (MeOH): 291 (3.84), 325 (4.00). $[a]_D^{T} = -23$ (c = 0.10, DMSO). IR: 3368, 3002, 2961, 2932, 2855, 1735, 1702, 1620, 1576, 1563, 1504, 1449, 1288, 1120, 845, 650. ¹H- and ¹³C-NMR: *Table* 2. HR-TOF-MS: 507.0902 ($[M + Na]^+$, C₂₄H₂₀NaO₁₁⁺; calc. 507.0903).

7-[(2-O-Acetyl-β-glucopyranosyl)oxy]-7'-hydroxy-[8,8'-bi-2H-1-benzopyran]-2,2'-dione (**3**): White powder (MeOH). M.p. 179–180°. UV (MeOH): 320 (4.57). $[\alpha]_{19}^{19} = +71$ (c = 0.17, DMSO). IR: 3367, 3080, 2934, 2932, 2876, 1754, 1735, 1692, 1602, 1402, 1234, 1075, 838, 617. ¹H- and ¹³C-NMR: *Table 2*. HR-TOF-MS: 549.1006 ($[M + Na]^+$, C₂₆H₂₂NaO₁₂; calc. 549.1009).

Helvetica Chimica Acta - Vol. 92 (2009)

REFERENCES

- [1] P. T. Li, Y. Jiang, 'Flora of China', Science Press, Beijing, 1979, Vol. 52, p. 378.
- [2] W. Dagang, B. Sorg, W. Adolf, E. H. Seip, E. Hecher, Phytother. Res. 1991, 5, 163.
- [3] W. Zhang, W. D. Zhang, T. Z. Li, *Fitoterapia* **2004**, *75*, 799.
- [4] W. D. Zhang, Q. R. Shi, Y. H. Shen, H. S. Chen, Fitoterapia 2007, 78, 596.
- [5] J. Su, Z. J. Wu, R. H. Liu, Y. H. Shen, C. Zhang, H. L. Li, W. Zhang, W. D. Zhang, Chin. Chem. Lett. 2007, 18, 835.
- [6] L. G. Zhuang, O. Seligmann, H. Wagner, Phytochemistry 1983, 22, 617.
- [7] F. Cottiglia, L. Bonsignore, G. Loy, D. Garau, C. Floris, M. Casu, Magn. Reson. Chem. 2002, 40, 551.
- [8] L. D. Geng, C. Zhang, Y. Q. Xiao, China J. Chin. Mater. Med. 2006, 31, 43.
- [9] S. H. Li, L. J. Wu, H. Y. Gao, Y. H. Chen, Y. Li, J. Asian Nat. Prod. Res. 2005, 7, 839.

Received June 16, 2008